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1. Introduction

Although the Feynman path-integral formulation I offers a general

approach for treating quantum-mechanical systems, only several problems can

be solved exactly. Two of these are the driven harmonic oscillator with a

quadratic Hamiltonian2 and the time-dependent damped driven harmonic
3

oscillator. A number of situations such as superconducting quantum
4 5

interference devices, quantum nondemolition measurments,

~6
magnetohydrodynamics, etc., can be described by driven copuled harmonic
4: 7
oscillators. Introducing the Caldirola-Kanai Hamiltonian, one can obtain

the time-dependent Schroedinger equation for the damped harmonic oscillator.

However, it has been a matter of debate as to whether or not this

Schroedinger equation represents the quantum mechanical dissipative 
system.

Some workers9 claim affirmation while others1 0 object to it. This problem

has been critically reviewed by Greenberger
1 1 and Cervero and Villaroel.

1 2

The purpose of this paper is to derive the propagator for a driven

coupled harmonic oscillators (DCHO) system from our previous work1 3 for both

coupled and coupled driven harmonic oscillators by means of the path-

integral method. We introduce two harmonic oscillators that are coupled

together with another spring. We review the classical case and construct

the form of the propagator for DCHO, respectively, in Secs. 2 and 3.

Section 4 gives the exact derivation of the propagator for the coupled

harmonic oscillators (CHO), and in Sec. 5 we evaluate the exact propagator

for DCHO by using the results obtained in Sec. 4. The energy expectation

values of CHO are evaluated in Sec. 6, and finally we give results and

discussion in Sec. 7.
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2. Classical case

In this section we consider a system of two harmonic oscillators which

are coupled together by means of another spring. We assume that the masses

of the oscillators and three spring constants are all the same. Let the

forces fl(t) and f2(t) exerted on the two oscillators and their

displacements be xI and x2 . Then the Hamiltonian for DCHO can be written as

H 2 2 2 2 2 (2.1)
2m (p1+P2) + (x-XlX 2 +x2 ) - fl(t)xl - f2(t)x2 

where w 2 . k/m. Hamilton's equations of motion for Eq. (2.1) are

xl p1/m (2.2)

2 " P2/m (2.3)

p1 " (x2-2x1 ) 
+ f1 (t) (2.4)

P2 " m 2 (x1 -2x2) + f2 (t) 
(2.5)

Equations (2.1)-(2.5) yield the Lagrangian,

L - (pl1 +P2 2 ) - H

.-2.2, 2.2 2.
2 ( X+x 2) _ mw2(x2-x x 2+x 2 ) + f1(t)x1 + f2(t)x2  (2.6)

with the corresponding equations of motion
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X + w2 (2x 1 -x 2 ) - fl(t)/m (2.7)

x2 + W2 (2x2.xl) - f2 (t)/m (2.8)

The classical solutions of Eqs. (2.7) and (2.8) are given by

x (t) - A sin(wt) + B cos(wt) + C sin(./3wt) + D cos(,/wt)

+ Jd Jrdv ei(2r-v-t) (v) f 2 (v) (2.9)

and

x2(t) - A sin(wt) + B cos(wt) - C sin(/wt) - D cos(ct)

+ Jdr fdv e lw( 2 Tvt) [f() - f2 (-)] (2.10)

3. Path integral of driven coupled harmonic oscillators

In the path-integral formulation, the solution of the Schroedinger

equation is given as the path-dependent integral equations with propagator

K,

o(xl.x 2,t) _ J dxidxj K(x1 2, t; xxi.o.) O(xi'.xiO) (3.1)

which gives the wavefunction O(x1 ,x 2 ,t) at time t in terms of the wave

function O(xj.x') at time t - 0. The propagator in Eq. (3.1) can be written

by means of the Feynman path integral
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K~l~ 2 ~x~x ) xl'2')Dx(t) exp((KiS(x.x 2 ' x{~xj; t) (3.2)

whe re

Dx(t) - lim A [cydx '~ A2  (3.3)

and S(x.x 2 ' x{~xj; t) is the action defined as the time integral over the

Lagrangian L(x1 ,x 2 ' x 1 x 2; t) between t - t and t -0:I1

S(X1 ,x 2 ' x,xj;t) - 0 dt L(x13 2 ' x1,x2; t) (3.4)

In Eq. (3.3) A is the normalization factor given by

A - [2xri)/mj c - lim(t/N) .(3.5)

Substituting Eq. (2.6) into Eq. (3.4), the action becomes

S(xl1 x2.xj~x'; t) - Sc(xix 2.xj,xj; t)

+ dir MCy2(r) + y2(r) w2 2~2 y()-y(~ 2 i 2 ,T (3.6)

+ f, 21 2 - 2lylr) yl'r~2(r +Y 2(r

where S Cis the classical action and yj is the deviation of x.(t) from its

classical path xci given as
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Yi - xci (i - 1,2) (3.7)

Then the propagator (Eq. (3.2)] can be expressed as

K(xlx 2, t; x' xi,O) - F(t) e i (3.8)

Here, F(t) is the multiplicative function given in the form

F(t) - Dx(t) (exp ((im/2X) dt (Yl + 2 - 2wo (yl 2 YY 2 + Y2
] }

00

(3.9)

It is easy to show that F(t) has the same form for CHO and DCHO. Therfore,

the propagator depends only on the classical action in both cases. In Eq.

(3.9). change the variables xI ± x2 into

I (3.10)z" (xI - x2)
12 " 1 2

z (x1 + X (3.11)

we can reduce the condition (yly 2 ) - (0,0) to (zl,z 2 ) - (0,0). Applying

Eqs. (3.10) and (3.11) to Eq. (3.9), the multiplicative function becomes

SJt "2 232 2 22
F(t) - J J Dz(t) (exp[(im/2)) Dz(t) [(z1 -W z) + (z2-3w z 2)

0

(3.12)



1 1
y1  ,h ~ . .0 0 0

1 1
Y12 7 0 0 012

02  0 1 z2
Y21 720 0 0 021

0N-I,2 0 0 0 0 ZN 2

0 0 0 0 1 1YNI 727 0-ZNl

N10 0 0 0 1 . ~zN

YN2 L2 12 N20

(3.13)

In Eq. (3.12), J becomes unity.

If the action is separated into the functionals with only same

variables in the path integral, then this integral can be represented by the

multiplication of path integrals with each variable. Therefore, Eq. (3.12)

becomes

F(t) - Fl(t) F2 (t)



-J
0Dz (t) exp[(im/24) J dt ( 2_wjz2)I)

X Dz (t) exp[(in/2) tdt ( 2 -3w2z2 )D . (3.14)

Since F 1(t) and F 2(t) are the path integrals of the harmonic oscillator, the

evaluation of Eq. (3.14) gives

F(t) - MW [snr -F3 .~w (3.15)

Hence, the propagator of DCHO can be written as

Kxx2 't 27.riO - K[sin(wt) sin( 3wt)] C(.6

4. Propagator for the coupled harmonic oscillators

To evaluate the exact propagator expressed by Eq. (3.16), we should

first obtain the propagator for CHO. The classical action of CHO is

S.- t dr m 212  MW 2 - (x 2 -x x + 41
0 d 2 2cl c2 ci ci c2 Xc2)(41

where x ci and xc, are the classical path and velocity, respectively.

Integrating Eq. (4.1) over the time, we get

sc -M~x + dr3 x ( x +w 2 (2x -x
2 ci cisic2c 1t - o 2ci ci cl- c2
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It dr 2(0 m Xc2( c2+ 2Xc2-xcl)}

- [X(t)Xc(t)+X2 (t)X 2 (t)-X (0)X c(0)-X 2 (0)X 2 (0)] (4.2)

Here the second and third terms become zero because of the equations of

motion [see Eqs. (2.7) and (2.8)], given as

I + w 2 (2x1 -x2 ) - 0 (4.3)

2 + w2(2x2-x1) - 0 (4.4)

To obtain the exact expression of Eq. (4.2), we solve Eqs. (4.3) and (4.4)

to obtain

x - X1 (t) - A sin(wt) + B cos(wt) + C sin(.I3wt) + D cos(Iwt) (4.5)

x2 - x2 (t) - A sin(wt) + B cos(wt) - C sin(.3wt) - D cos(J'3wt) (4.6)

and 1 and 2 are given, respectively, by

- x1 (t) - wJA cos(wt) - B sin(wt) + -3/C sin(GJ3wt)

- ,/D sin([3wt)) (4.7)

2 x2 (t) - w(A cos(wt) - B sin(wt) - ./3C cos(./3wt)

+ /D sin(./3wt)) (4.8)
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Equations (4.5)-(4.8) give

xi - x1 (O) - B + D (4.9)

xi - x2 (0) - B - D (4.10)

-, " (° ) - .(A J R/ ) (4.11)

= x2 (0) - ,(A - 3C) (4.12)

The time-dependent constants A, B, D and D obtained from Eqs. (4.5) and

(4.6), and Eqs. (4.9) and (4.10) can be expressed as

A -I sin(wt)] (x1 + x2 - (xj + X) cos(wt)) (4.13)

1 (x i + XP (4.14)

1

C - [ sin(t)] (x - x + (xi - xj) cos(./3t)) (4.15)

1

D- (xj-x) (4.16)

Substitution of Eqs. (4.5) -(4.16) into (4.2) gives the classical action:

Sc -W ((x2 xi 2 + x2 )[cot(wt) + J/3 cot(J,/ot)])

+ 2(xlx 2 + XjX') [cot(wt) - J-3 cot (f3wt)]
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2(x x i + x2x') ((l/sin(wt) + .//sin(Jiwt)])

+ 2(x x1  + x2xi ) [-i/sin(wt) + (./sin( _wt)] (4.17)

Combining Eqs. (4.17) and (3.16), we obtain the propagator for CHO:

K~xlxt; i' 'O -Mw[,3/sin(wt) sin(,/3-t)] 1K(X 1 ,X 2 ,t; xi.x2. 0) - 22ri)

2 2 2 2

* exp((imw/4X)[(x2 + x 2 + xi + X 2)[cot(wt) + T/3 cot(T/wt)]

+ 2(x1x 2 + xjx )[cot(wt) - 3 cot(.Thwt)] - 2(xlx i + x2x )[1/sin(wt)

+ I3/sin(T3wt)] + 2(xlxi + x2xi) [-i/sin(wt) + T3/sin(Twt)])

(4.18)

5. Propagator for driven coupled harmonic oscillators

When we set f1 (t) - f2 (t) - 0, DCHO reduces to CHO, whereby we can

write the propagator for DCHO as

2 2
K(xl,x2 ,t; xi,xio,) - exp[a(t)xi + b(t)x x2 + c(t)x2 + d(t)x1

+ g(t)x 2 + h(t)] . (5.1)

Here a(t), b(t), c(t), d(t), f(t) and h(t) are time-dependent functions

including x i and xj, which need to be determined. Equation (5.1) must

satisfy the Schroedinger equation
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i)((K/at) - H K (5.2)

Substitution of Eq. (5.1) into Eq. (5.2) gives the time-dependent

coefficients

a(t) - i [4a 2 (t) + c2 (t)] + m 2 (5.3)2m

b(t) - [ [4b 2 (t) + c2 (t)l + M2/AX (5.4)

c(t) m 2iW [a(t)c(t) + b(t)c(t)] - mw 2/i (5.5)
m

d(t) - [2a(t)d(t) + c(t)g(t)] + ()fl(t) (5.6)

g(t) - im[2b(t)g(t) + c(t)d(t)] + (i)f2(t) (5.7)
mX2

h(t) - A [d2 (t) + g2 (t) + 2a(t) + 2b(t)] (5.8)

Since Eqs. (5.3) and (5.4) have the same form, we get

a(t) - b(t) . (5.9)

Substituting Eq. (5.9) into Eq. (5.5) and changing the variables a and c

into

a + c/2 (5.10)

-a - c/2 , (5.11)
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we obtain two ordinary differential equations:

i2 m2
m72 + mW (5.12)

2ill 2 + (5.13)
m 21X

The solutions of Eqs. (5.12) and (5.13) are given by

- i2m cot(Wt + (5.14)"2)9

F-im cot(./wt + 62) , (5.15)

where eI and 02 are the constants to be determined. The time-dependent

coefficients a(t), b(t) and c(t) obtained in comparison with Eqs. (5.10),

(5.11), (5.14) and (5.15) are given as

~i~m

a(t) - b(t) - 4X [cot(Wt + 01) + 4 cot(.J wt + 02)] (5.16)

c(t) - [cot(Wt + ) ./3 cot(,/3t + 02)] (5.17)

Equations (5.16) and (5.17) do not include the driven forces fl(t) and

f2 (t). Therefore, through setting f1 (t) - f2 (t) - 0, Eqs. (5.16) and (5.17)

do not change at all and should be equal to the coefficients of x and x2 in
1 2 i

Eq. (4.18). Comparison of these two equations shows 61 and 92 to be zero.

Substituting Eq. (5.9) into Eqs. (5.6) and (5.7) and changing variables d

and g into
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p - d + g (5.18)

a d - g , (5.19)

we obtain the two differential equations

- N[2a(t) + c(t)] p + i~fl(t) + f2 (t) , (5.20)

1- 2a(t) + c(t)] a + [fl(t) - f2 (t) (5.21)

Combining Eqs. (5.20) and (5.21) with Eqs. (5.16) and (5.17), we obtain the

solutions

It
p - [l/sin(ot)J J dr [fl(T) + f2 (r)] sin(wt) + a) (5.22)

It
a - [I/sin(/3wt)I J dr f f(r) - f2 (r)] sin(,/3wt) + 01 (5.23)

where a and 0 are constants to be determined. We can obtain the time-

dependent coefficients d(t) and g(t) by substituting Eqs. (5.22) and (5.23)

into Eqs. (5.18) and (5.19):

d(t) - [i/2)(sin(wt)] J dr(f1(T) + f2(r)] sin(wr)

t
+ (i/2)(sin(,F/wt)j dr[ff(r) - f2 (r)] sin(.fiwr)

+ [a/2sin(,jt)] + [8/2sin(./3wt)] (5.24)
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g(t) - i/2Xsin(wt)1 IfJ di' [f 1 () + f r)sin(wr)

- i/2)Xsin(Iwit)j 1J dr [f I(T) - f 2(r)] sinC/~wr)

+ [a/2sin(wt)] - [f/2sinC/-3wt)] . (5.25)

Su.bstitution of Eqs. (5.16), (5.17), (5.24) and (5.25) into Eq. (5.8) yields

h(t) " (a 2~ c2(w) + (0 2 /,/) cot(ITot)]

- a/mwosin(wt)) dr (f I(r) + f 2(r)] sin[w(t-r)]

-(p/./3rwsin(./~wt)I J0 dr [f I () - f 2 (,)] sin[./-co(t-,r)]

* (1/41y(mwsin(wt)] JO dr J0 d& [f I(r) + f 2 (0)]

* (f 1 (V) + f 2 (v)] sin[w(t-r)]sin(wLv)

+ (l/4,/Rimw sin(.IFcot)] J dr J dv [ f I(r) -f2()

x (f IM - f2 (v)]sin[,,'3w(t-r)] sin(TIw&i) - In(sin(wt)

* sin(fl~wt) + 6 .(5.26)

Here, 6 is also a constant to be determined. WJhen setting f 1(t) - f 2(t) -

0, Eqs. (5.24) and (5.25) should be reduced to the coefficients of xand
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x2- and Eq. (5.26) should also be reduced to the terms in the exponent in

Eq. (4.18). Comparison between them gives the constants a, 0 and 6:

a --- (xii+ xj) (5.27)

M (x x) ,(5m28)

6 - In(-) . (5.29)

Substitution of the above results into Eq. (5.1) gives the propagator for

DCHO:

K(x1 ,x2,t; xilx2,O) - '3/[sin(wt) sin(C-wt)]}

* expPmi (x2 x + ,2 + xi 2 )[cot(wt) + ./Ncot(I-3wt)]

+ 2(xIx 2 + xjx )[cot(wt) - J3cot(J-wt)] - 2(xlx i + x2x )(1/sin(wt)

+ ,/ /sinC/4wt)

+ 2(x1xi + xix2 )[-l/sin(wt) + IY/sin(,rlct)]

2x
+ 2  (l {[I/sin(wt)] dr [fl(r) + f2 (r)] zin(wr)

+ (1/sin(lcwt)] t dr [f1(r) - f2()] sin(T/wr))
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2x2  rt
+ ([l/sin(wt)] fI dr [f 1(T) + f 2(r)] sin(wr)

- {/sin(,/J3wt)] Jo dr [f (7) - f 2(r)] sin(/-3wrj)

+4xi rt

mw ([l/sin(wt)] Jo dr (ff1 () + f 2(r)] sin[w(t-r)]

+ (/si(J-wt) fodr (f I(r) - f 2 (1)] sin(./~wr))

+ 4 ([1/sin(cwt)] J dr [f (7) + f (r)] sin[co(t-r)]

- [1/sin(T/~wt)] fo dr (f 1(,r) -f 2 ()) sifl(.~wT))

- (m2 w2 f~t)] d f If(r) + f2 (r)H 1f(V) +f2

x sin[w(t-r)] sin(wv)

- (//~m~wn c in(Tiwt)] J drt chi' (f 1 (r) - f 2(r)][f1 (V) f f2(v)]

x sin(I13-(t-r)] sin(T~wvL))} (5.30)
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6. Energy expectation values of coupled harmonic oscillators

The Hamiiltonian of CHO is

H p2+ p 2) + Mt2 (x 2 x x2 + x 2  (6.1)

Using Eqs. (3.1) and (3.2) with Eq. (6.1), we obtain the Schroedinger

equation,

ix(a9/at) O(xl,x 2 't) - H op (xlx 2 't) (6.2)

where H opis the Hamiltonian operator in which the momentum pi is changed

into pj - ()K/i)(a/Oxi). Since Eq. (6.2) can be separated into time and

coordinate parts, we may write

K(t) -e iHop t/X(6.3)

H op 1,n>- E1 I ,n> . (1,n - 1,2,3,....) (6.4)

Here the states 12,n> are the complete set with energy eigenvalues of H o

Since the function with states II,nL> can be expressed by

*in (x1~x2) <x1,x 2 11,n> ,(6.5)

the propagator at t > 0 becomes

K(x 1l,x 2 't; xi 'xiO) - <x1,X 2Ie- MP o/i jx'x>
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-2<xlx 2 ll n> <Anle -~pt) 11',n'> <A' ,n'jx~
I n A'n'

- Oln(xlx2) e In t/ n(XX (6.6)

An

Equation (6.6) should be the same as Eq. (4.18). Setting x' - x and x' -

x 2 in Eq. (4.18) and integrating over x and x2' we get

iEIn t/)f -iEIn t/jK

dx 1 dx 2 Ol 2ex O (xl ,o X - e.7)
n

and

x exp(imw[(x 1 + x2 )
2 - 43(x - 2][cot(wt) i/sin(wt)]}

2K1 2 1 x2) ~o~t /i~t

[sin(wt/2)sin(4f/2wt)] -  (6.8)

Hence, we have

1-

2 e It/ 2 [sin(wt/2)sin(J/2wt)]'

A n

- [e'iwt/2/( I . e'i~"t)][e - iJwt/2/(l _-'~t)
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-exp(-icwt[(I + 1) + ,/3(n + 1)]) (6.9)
1-0 n-O

Therefore the expectation values of CHO becomes

E [(2U + i) + T3 (n +.1 )] )(cW (6.10)

7. Results and discussion

In the previous sections we have obtained the exact propagators [Eqs.

(4.18) and (5.30)] for CHO and DCHO by the path-integral method. The forms

of the propagators are new. Setting f(t) - 0, Eq. (5.30) is reduced to Eq.

(4.18). Although DCHO is a nonconservative system, the quantum-mechanical

problem for the momentum operator does not appear because the canonical

momentum is equal to the kinetic momentum in our derivation.
1 3

Making use of Eq. (4.18), we have obtained the energy expectation

values [Eq. (6.10)] for CHO, given by the sum of two energy expectation

values corresponding to the quantum states of two oscillators. Even though

we have not evaluated the wavefunction of CHO, we may easily surmise that

the wavefunction will be given by the multiplication of two wavefunctions

for two oscillators. In the case of DCHO, one cannot easily apply Eq.

(5.20) to obtain the energy expectation values, since this equation cannot

be expressed in the form of Eq. (6.6), and one should recognize that the

energy operator is not equal to the Hamiltonian operator in a

9
nonconservative system.

The evaluations for the wavefunctions, energy expectation values for

CHO and DCHO, and propagator and other physical quantities for n coupled and
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n driven coupled harmonic oscillators (arbitrary n) are in progress and will

be reported in the near future.
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